Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

MCA NIMCET Previous Year Questions (PYQs)

MCA NIMCET 2015 PYQ


MCA NIMCET PYQ 2015
If $\vec{a}=4\hat{j}$ and $\vec{b}=3\hat{j}+4\hat{k}$ , then the vector form of the component of $\vec{a}$ alond $\vec{b}$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $\vec{a}$ and $\vec{b}$ in space, given by $\vec{a}=\frac{\hat{i}-2\hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{2\hat{i}+\hat{j}+3\hat{k}}{\sqrt{14}}$ , then the value of $(2\vec{a}+\vec{b}).[(\vec{a} \times \vec{b}) \times (\vec{a}-2\vec{b})]$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
Let $\vec{a}$ and $\vec{b}$ be two vectors, which of the following vectors are not perpendicular to each other?





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $A=\begin{bmatrix} a &b &c \\ b & c & a\\ c& a &b \end{bmatrix}$ , where $a, b, c$ are real positive numbers such that $abc = 1$ and $A^{T}A=I$ then the equation that not holds true among the following is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The equation of the tangent at any point of the curve $x=acos2t$, $y=2\sqrt{2}a sint$ with $m$ as its slope is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The locus of the mid points of all chords of the parabola $y^{2}=4x$ which are drawn through its vertex, is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The value of $\lim_{x\to a} \frac{\sqrt{a+2x}-\sqrt{3x}}{\sqrt{3a+x}-2\sqrt{x}}$





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The value of $\int_{-\pi/3}^{\pi/3} \frac{x sinx}{cos^{2}x}dx$





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{{81}}=\frac{1}{25}$ coincide, then the value of $b^{2}$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $a+b+c=\pi$ , then the value of $\begin{vmatrix} sin(A+B+C) &sinB &cosC \\ -sinB & 0 &tanA \\ cos(A+B)&-tanA &0 \end{vmatrix}$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If the mean deviation of the numbers 1, 1 + d, 1 + 2d, ....., 1 + 100d from their mean is 255, then the value of d is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $P=sin^{20} \theta + cos^{48} \theta $ then the inequality that holds for all values of is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If a, b, c are in geometric progression, then $log_{ax}^{a}, log_{bx}^{a}$ and $log_{cx}^{a}$ are in





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The value of the sum $\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $\vec{a}=\hat{i}-\hat{k},\, \vec{b}=x\hat{i}+\hat{j}+(1-x)\hat{k}$ and $\vec{c}=y\hat{i}+x\hat{j}+(1+x-y)\hat{k}$ , then $[\vec{a} , \vec{b}, \vec{c}]$ depends on





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $42 (^nP_2)=(^nP_4)$ then the value of n is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The foot of the perpendicular from the point (2, 4) upon $x + y = 1$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The value of k for which the equation $(k-2)x^{2}+8x+k+4=0$ has both real, distinct and negative roots is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If (2, 1), (–1, –2), (3, 3) are the midpoints of the sides BC, CA, AB of a triangle ABC, then equation of the line BC is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If a fair dice is rolled successively, then the probability that 1 appears in an even numbered throw is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector $\vec{v}$ in the plane of $\vec{a}$ and $\vec{b}$ whose projection on $\frac{\vec{c}}{|\vec{c}|}$ is $\frac{1}{\sqrt{3}}$, is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The number of bit strings of length 10 that contain either five consecutive 0’s or five consecutive 1’s is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $0 < x < \pi $ and $cos x + sin x = \frac{1}{2}$ , then the value of tan x is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $\vec{a}, \vec{b}$ and $\vec{c}$ are the position vectors of the vertices A, B, C of a triangle ABC, then the area of the triangle ABC is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $\int e^{x}(f(x)-f'(x))dx=\phi(x)$ , then the value of $\int e^x f(x) dx$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $3x + 4y + k = 0$ is a tangent to the hyperbola ,$9x^{2}-16y^{2}=144$ then the value of $K$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
$a, b, c$ are positive integers such that $a^{2}+2b^{2}-2bc=100$ and $2ab-c^{2}=100$. Then the value of $\frac{a+b}{c}$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $(– 4, 5)$ is one vertex and $7x – y + 8 = 0$ is one diagonal of a square, then the equation of the other diagonal is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
Out of $2n + 1$ tickets, which are consecutively numbered, three are drawn at random. Then the probability that the numbers on them are in arithmetic progression is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
A circle touches the X-axis and also touches another circle with centre at (0, 3) and radius 2. Then the locus of the centre of the first circle is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
Let $\bar{P}$ and $\bar{Q}$ denote the complements of two sets P and Q. Then the set $(P-Q)\cup (Q-P) \cup (P \cap Q)$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
With the usual notation $\frac{d^{2}x}{dy^{2}}$





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The radius of the circle passing through the foci of the ellipse $\frac{x^2}{16}+\frac{y^2}{9}$and having it centre at (0, 3) is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
A function $f : (0,\pi) \to R$ defined by $f(x) = 2 sin x + cos 2x$ has





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
A matrix $M_r$ is defined as $M_r=\begin{bmatrix} r &r-1 \\ r-1&r \end{bmatrix} , r \in N$ then the value of $det(M_1) + det(M_2) +...+ det(M_{2015})$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $\vec{AC}=2\hat{i}+\hat{j}+\hat{k}$ and $\vec{BD}=-\hat{i}+3\hat{j}+2\hat{k}$ then the area of the quadrilateral ABCD is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The value of $sin^{-1}\frac{1}{\sqrt{2}}+sin^{-1}\frac{\sqrt{2}-\sqrt{1}}{\sqrt{6}}+sin^{-1}\frac{\sqrt{3}-\sqrt{2}}{\sqrt{12}}+...$ to infinity , is equal to





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If two circles $x^{2}+y^{2}+2gx+2fy=0$ and $x^{2}+y^{2}+2g'x+2f'y=0$ touch each other then whichof the following is true?





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
$\int_0^\pi [cotx]dx$ where [.] denotes the greatest integer function, is equal to





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
In a right angled triangle, the hypotenuse is four times the perpendicular drawn to it from the opposite vertex. The value of one of the acute angles is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
A is targeting B, B and C are targeting A. Probability of hitting the target by A, B and C are $\frac{2}{3}, \frac{1}{2}$ and $\frac{1}{3}$ respectively. If A is hit then the probability that B hits the target and C does not, is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If the angles of a triangle are in the ratio 2 : 3 : 7, then the ratio of the sides opposite to these angles is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
Suppose that A and B are two events with probabilities $P(A) =\frac{1}{2} \, P(B)=\frac{1}{3}$ Then which of the following is true?





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The number of one-to-one functions from {1, 2, 3} to {1, 2, 3, 4, 5} is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
A harbour lies in a direction 60° South of West from a fort and at a distance 30 km from it, a ship sets out from the harbour at noon and sails due East at 10 km an hour. The time at which the ship will be 70 km from the fort is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $x, y, z$ are three consecutive positive integers, then $log (1 + xz)$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
A professor has 24 text books on computer science and is concerned about their coverage of the topics (P) compilers, (Q) data structures and (R) Operating systems. The following data gives the number of books that contain material on these topics: $n(P) = 8, n(Q) = 13, n(R) = 13, n(P \cap R) = 3, n(P \cap R) = 3, n(Q \cap R) = 3, n(Q \cap R) = 6, n(P \cap Q \cap R) = 2 $ where $n(x)$ is the cardinality of the set $x$. Then the number of text books that have no material on compilers is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
The value of $tan(\frac{7\pi}{8})$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
If $\vec{a}$ and $\vec{b}$ are vectors such that $|\vec{a}|=13$, $|\vec{b}|=5$ and $\vec{a} . \vec{b} =60$then the value of $|\vec{a} \times \vec{b}|$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ 2015
Two towers face each other separated by a distance of 25 meters. As seen from the top of the first tower, the angle of depression of the second tower’s base is 60° and that of the top is 30°. The height (in meters) of the second tower is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution



MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...